This presentation is from Ampt’s participation in a panel discussion at:
Solar Asset Management – North America
Session 7A – Repowering: What Is It and How Does It Impact the Bottom Line?

13-14 March 2018 - San Francisco
Innovative DC Power Management

Lower cost and higher performing PV systems

Optimize PV Systems
Repower PV Systems
DC-Coupled Storage
Monitoring and O&M
Repowering and the emerging role of Solar Asset Management

Traditional Role

Monitor
- Alert setup / response
- Data analysis / insights
- Issue identification
- Reporting
- Forecasting

Knowledge management

Maintain
- Site upkeep (routine)
- Repairs
- Replacements
- Warranty management
- Contracting

Operational management

Activities

Optimization Focus

Decisions
- Limited visibility
- Lack of granular control

Cost
- Equipment availability
- Component compatibility

Ampt, LLC. ©2018
Repowering and the emerging role of Solar Asset Management

Activities

Monitor
- Alert setup / response
- Data analysis / insights
- Issue identification
- Reporting
- Forecasting

Maintain
- Site upkeep (routine)
- Repairs
- Replacements
- Warranty management
- Contracting

Revenue Engine
- Asset divestitures
- Asset acquisitions
- Performance enhancement
- System expansion
- New business models

Optimization Focus

Decisions
- Knowledge management

Cost
- Operational management

Production
- Portfolio management

Challenges & Constraints for Repowering

- Limited visibility
- Lack of granular control
- Equipment availability
- Component compatibility
- Systems degrade over time
- Hard to add array capacity (voltage imbalances & ampacity limits)
Repowering and the emerging role of Solar Asset Management

<table>
<thead>
<tr>
<th>Activities</th>
<th>Traditional Role</th>
<th>Emerging Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alert setup / response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data analysis / insights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecasting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain</td>
<td>Site upkeep (routine)</td>
<td>Asset divestitures</td>
</tr>
<tr>
<td>Repairs</td>
<td>Repairs</td>
<td>Asset acquisitions</td>
</tr>
<tr>
<td>Replacements</td>
<td>Replacements</td>
<td>Performance enhancement</td>
</tr>
<tr>
<td>Warranty management</td>
<td>Warranty management</td>
<td>System expansion</td>
</tr>
<tr>
<td>Contracting</td>
<td>Contracting</td>
<td>New business models</td>
</tr>
<tr>
<td>Knowledge management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational management</td>
<td></td>
<td>Portfolio management</td>
</tr>
<tr>
<td>Revenue Engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization Focus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decisions</td>
<td>Traditional Role</td>
<td>Emerging Role</td>
</tr>
<tr>
<td>Cost</td>
<td>Maintain</td>
<td>Revenue Engine</td>
</tr>
<tr>
<td>Production</td>
<td>New Systems</td>
<td></td>
</tr>
<tr>
<td>“Options”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Challenges & Constraints for Repowering

- Limited visibility
- Lack of granular control
- Equipment availability
- Component compatibility
- Systems degrade over time
- Hard to add array capacity (voltage imbalances & ampacity limits)
- Affordable technology did not exist to build in flexibility for the future

Technology is evolving to meet emerging Repowering opportunities.
Repowering advantages using DC Power Management

Maintain

- Inverter Replacement
- EBOS Rework
- Module Replacement

Cost Optimization

- Available & compliant
- Backward compatible
- Minimize component cost
- Minimize labor cost
- Minimize downtime
- Minimize mismatch

Ampt, LLC. ©2018
Repowering advantages using DC Power Management

Maintain

- Use modern inverters:
 - Lower cost/W; more efficient
 - 1000V inverters in 600V systems
 - 1500V inverters in 1000V systems
 - Use central inverters
 - Use string inverters as "virtual centrals"

- Leverage existing EBOS
 - Use existing DC cables
 - Use existing combiners
 - No retrenching

- MPPT on every string
 - Mix old & new strings
 - Flexible inventory

- String-level communication
 - Improved O&M
 - Programmable outputs (future-proofing)

Inverter Replacement
EBOS Rework
Module Replacement

Cost Optimization
- Available & compliant
- Backward compatible
- Minimize component cost
- Minimize labor cost
- Minimize downtime
- Minimize mismatch

Ampt, LLC. ©2018
Repowering advantages using DC Power Management

Maintain
- **Use modern inverters:**
 - Lower cost/W; more efficient
 - 1000V inverters in 600V systems
 - 1500V inverters in 1000V systems
 - Use central inverters
 - Use string inverters as “virtual centrals”
- **Leverage existing EBOS**
 - Use existing DC cables
 - Use existing combiners
 - No retrenching
- **MPPT on every string**
 - Mix old & new strings
 - Flexible inventory

Revenue Engine
- **Improve performance**
- **Prep system for sale**
- **Minimize component cost**
- **Minimize labor cost**
- **Minimize downtime**
- **Minimize mismatch**
- **Cost Optimization**
- **Production Optimization**

EBOS Rework
- Use existing DC cables
- Use existing combiners
- No retrenching

Module Replacement
- Mix old & new strings
- Flexible inventory

Inverter Replacement
- Lower cost/W; more efficient
- 1000V inverters in 600V systems
- 1500V inverters in 1000V systems
- Use central inverters
- Use string inverters as “virtual centrals”

String-level communication
- Improved O&M
- Programmable outputs (future-proofing)
Repowering advantages using DC Power Management

Maintain

Cost Optimization

- Minimize component cost
- Minimize labor cost
- Minimize mismatch

Revenue Engine

Production Optimization

- Mine existing assets
- Backward compatible

Improve performance

- MPPT on every string
 - Mix old & new strings
 - Flexible inventory

Leverage existing EBOS

- Use existing DC cables
- Use existing combiners
- No retrenching

Use modern inverters:

- Lower cost/W; more efficient
- 1000V inverters in 600V systems
- 1500V inverters in 1000V systems
- Use central inverters
- Use string inverters as “virtual centrals”

- Use central inverters
- Use string inverters as “virtual centrals”

- Use existing DC cables
- Use existing combiners
- No retrenching

Leverage existing EBOS

EBOS Rework

- Use existing DC cables
- Use existing combiners
- No retrenching

- Use existing DC cables
- Use existing combiners
- No retrenching

Module Replacement

MPPT on every string

- Mix old & new strings
- Flexible inventory

String-level communication

- Improved O&M
- Programmable outputs (future-proofing)
Repowering advantages using DC Power Management

Maintain
- Use modern inverters:
 - Lower cost/W; more efficient
 - 1000V inverters in 600V systems
 - 1500V inverters in 1000V systems
 - Use central inverters
 - Use string inverters as "virtual centrals"
- Leverage existing EBOS
 - Use existing DC cables
 - Use existing combiners
 - No retrenching
- MPPT on every string:
 - Mix old & new strings
 - Flexible inventory
- String-level communication
 - Improved O&M
 - Programmable outputs (future-proofing)

Revenue Engine
- Use modern inverters:
 - 1000V inverters in 600V systems
 - 1500V inverters in 1000V systems
- Use central inverters
- Use string inverters as "virtual centrals"
- Use existing EBOS
 - Use existing DC cables
 - Use existing combiners
 - No retrenching
- MPPT on every string:
 - Mix old & new strings
 - Flexible inventory
- String-level communication
 - Improved O&M
 - Programmable outputs (future-proofing)

Cost Optimization
- Minimize component cost
- Minimize labor cost
- Minimize mismatch
- Minimize downtime

Production Optimization
- Available & compliant
- Backward compatible
- Mine existing assets

Revenue Engine
- Improve performance
- Prep system for sale
- Grow asset base
- Acquire distressed assets

Recover system degradation losses
- 7% energy increase over remaining life of 10-year-old system
- Energy increase significantly higher for underperforming systems

Ampt, LLC. ©2018
Use modern inverters:
- Lower cost/W; more efficient
- 1000V inverters in 600V systems
- 1500V inverters in 1000V systems
- Use central inverters
- Use string inverters as "virtual centrals"

Leverage existing EBOS
- Use existing DC cables
- Use existing combiners
- No retrenching

MPPT on every string
- Mix old & new strings
- Flexible inventory

String-level communication
- Improved O&M
- Programmable outputs (future-proofing)
Repowering: What is it and how does it impact the bottom line?

- The roles of SAMs and repowering are expanding
- Innovative technology is enabling new opportunities
- Repowering has emerged as a revenue engine (vs. cost)
- Develop a vision for “Portfolio” and “Future” management
- Build in flexibility – options have value
- New systems can be designed for repowering while lowering upfront system cost using DC power management