ampt X.

Optimize PV Systems

Repower PV Systems

DC-Coupled Storage

Monitoring and O&M

Ampt String Optimizers Deliver Unmatched Value

Innovative DC power management

MPP Tracking on each string eliminates mismatch. Programmable output adapts to meet inverter and energy storage requirements.

Optimize PV Systems

Repower PV Systems

DC-Coupled Storage

Monitoring and O&M

Optimize PV Systems

Advantage of Optimized vs. Conventional Designs

More Energy Through Mismatch Correction

Central Inverters

1000's of Modules per MPP Tracker

Large String Inverters

100's of Modules per MPP Tracker

Ampt String Optimizers

10 - 30 Modules per MPP Tracker (72 cell)

More Energy

Smaller MPP zones = better correction for mismatch

Ampt String Stretch[®] Technology Allows 2x Longer Strings

50% fewer combiners and less cabling to save on cost

Lower Cost Inverter with Ampt Mode®

	Standard	Ampt Mode [®]	
DC electrical			
Max array input voltage	1500 V	1500 V	
Input voltage range	850 - 1500 V	1350 V	Fixed
Rated input voltage	850 V	1350 V	Higher
Max operating input current	3200 A	3200 A	
AC electrical			
Rated output voltage	600 V	800 V	Higher
Rated output current	2300 A	2300 A	
Rated output power	2400 kW	3200 kW	33% 🕇

Increasing inverter rated output power lowers cost per watt

Repower PV Systems

Repower Existing PV Systems

3 Ways to Repower Systems with Ampt

Recover Energy

Upgrade Inverters

Expand to High DC/AC Ratio

=

Recover energy lost from mismatch and degradation to increase production.

Upgrade inverters over time as each one ends its lifecycle with the newest inverter technology 2:1

Expand array size mixing new and legacy modules without overloading inverter to increase revenue

Deploy on Existing Wiring, Combiners & Inverter

2:1

- 1 Disconnect strings from combiner
- **2** Connect one string to each Ampt input using existing cables
- 3 Connect Ampt output to combiner
- 4 Set inverter to constant or narrow-range voltage operation

Simple drop-in use for low-cost installation

String optimizers recover ~33% of annual losses

Repowering date determined by value of energy and degree of degradation

Source: System degradation rates from "Field Experience: Degradation Rates, Lifetime and Failures", DJordan, NREL PVMRC 2016. Baseline module degradation rates from "Sunpower Module Degradation"- whitepaper PVMRC 2016. String Optimizer mismatch correction from "Reduction of Mismatch Losses with String Optimizers", AOIsson, NREL PVMRC 2016.

Recover Energy

2:1

Upgrade Inverters

As each inverter ends lifecycle:

- Replace legacy inverters with the newest inverter technology
- Use 1000-volt inverters at full rated power in 600-volt systems
- Use 1500-volt inverters at full rated power in 1000-volt systems

Ampt avoids costly re-wiring and re-trenching while lowering the cost of replacement inverters

Optimizer delivers full available power at the voltage set by inverter

Ampt optimizers serve as an "adapter" between legacy arrays and modern inverters

	1000-volt inverter			1500-volt inverter	
	11 11				
	Standard	With Ampt		Standard	With Ampt
Maximum system voltage	1000	600	-	1500	1000
Input voltage at full power	480 – 850	550	-	850 – 1250	950
Output power	500kW	500kW	-	1MW	1MW

Ampt works with both central and string inverters

Expand to High DC Ratio

Existing Inverter

- Add higher power modules to existing strings
- Add new strings to existing combiners
- Save 50% on EBOS when adding new sub-arrays
- Protects existing inverter from exceeding DC loading limits
- Eliminate mismatch losses between strings

Each string delivers full available power at a higher and narrow DC bus voltage

With Ampt, deploy high DC/AC ratio systems without overloading existing combiner boxes, cables, or inverters

Ampt Repowering Solution Delivers a High Return on Investment

15-30% return on investment

Typical return projected over the system life

Maximized annual project revenue

• Generate more energy over the system life

Lowest cost upgrade option

- Use existing wires & combiners
- Use existing inverters

Future-proof inverter replacement

- Upgrade with low-cost, modern string or central inverters
- No re-wiring or re-trenching

DC-Coupled Storage

Ampt DC-Coupled Cost Advantage

AC-Coupled Storage Ampt DC-Coupled Storage String Optimizer Homerun Wire More energy from Arraywire string-level MPPT string combiner PU Invertex 2x modules per string 50% fewer combiners 50% fewer homeruns Battery 50% lower cost battery converter BESS Inverter Higher DC/AC ratio (up to 3:1) Transformer & Switch Beat Increase inverter rated output power to lower cost per watt Fewer transformers and switchgear

Lower Cost & Higher Performance

Ampt DC-Coupled Performance Advantage

Storage Roundtrip Efficiency

Achieve higher roundtrip storage efficiency while increasing the operating efficiency of the inverter and battery converter.

Capture array power that would normally be lost by charging the battery during periods of AC power curtailment.

Mismatch Recovery

Deliver more energy by recovering mismatch losses from various sources with string-level maximum power point tracking (MPPT).

Charge the battery when the PV inverter is clipping output power. Ampt enhances this benefit with higher DC/AC ratios (up to 3:1).

Low Voltage Harvest

Charge the battery storage system when the array voltage is below the inverter turn on voltage to maximize energy production.

Recover energy losses caused by variable degradation of PV cell and modules within a system to improve lifetime system performance.

Superior Storage with Ampt

Performance advantage

- Higher roundtrip efficiency
- Capture more energy
- Mitigate degradation

Reduced system cost and complexity

- Lower cost power conversion
- Standard or bi-directional inverter
- Lower cost EBOS

Scalable and flexible

- Micro-grid to large power plants
- Add storage over time with less hardware cost
- Battery technology independent

With Ampt, the PV array is Storage-Ready[™] and scalable in the future

Monitoring

Optional String-Level Data for Improved O & M

ampt.com

